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ABSTRACT 

In structural engineering, a finite element model is often used to estimate 

its dynamic or static behavior, and in conjunction with measured data, to monitor 

the health of a structure. This research is focusing on the use of experimental 

data for the improvement of a finite element model such that it accurately 

represents the structure, and in the localization of artificial damage in the model. 

The method of Artificial Boundary Conditions in model update and damage 

identification is used. 

To update the finite element model, identified stiffness changes are 

typically applied at each element of the model. This research introduces and 

demonstrates a new method using the mean stiffness correction at every 

element, to produce improved prediction of natural frequencies. The use of this 

method in conjunction with a composite sensitivity matrix created from the 

application of artificial boundary conditions, and utilizing the higher modes, is 

shown to more accurately update the finite element model than the usual 

method. 

Furthermore, this research demonstrates a new method for damage 

identification that uses subtraction of residual stiffness values, which can identify 

the damage regardless of location. 
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 1 

I. INTRODUCTION 

A. BACKGROUND 

A large number of areas of engineering, such as structural engineering, 

and naval architecture, use the finite element method for analysis. In structural 

engineering, a finite element (FE) model is often used for the health monitoring of 

the structure and estimation of its dynamic or static behavior. Successful 

estimation and monitoring, therefore, require the finite element model to 

accurately represent the characteristics of the real structure. This is 

accomplished using a process called model update, which is discussed further in 

Chapter IV of this research. Then, using the damage identification technique, 

which is discussed in Chapter V, engineers can evaluate the health of the 

structure being modeled. 

In this thesis, finite element models are used for structural dynamics 

modeling and simulation, and more specifically, for damage identification in a 

prototype structure after updating the finite element model. The prototype 

structure is restricted to a beam that will be discretized using the finite element 

method. The elements have specific properties that are discussed later on, so 

that when they are assembled, they represent the real structure as realistically as 

possible. The first stage of finite element method is to construct the elements, 

and the second stage is to assemble them into structural matrices. 

Usually, dynamic characteristics of a prototype structure measured at 

spatially discrete points are used to characterize its behavior. Considering that 

the number of points at which response characteristics can be measured is small 

compared to the large number of points (degrees-of-freedom [DOF]) in a finite 

element model of the structure, and the frequency bandwidth of the test is 

limited, the measured characteristics are few. Although small in number, they are 

commonly used because they offer many useful data about the structure. 



 2 

In recent decades, much research has been done in improving and 

developing methods to update a computer model using experimental data from a 

prototype structure. But, what does it mean to update a model? Conducting a 

vibration (modal) test of a structure can determine many of its modal features, 

such as frequencies, mass, stiffness, mode shapes and damping. However, that 

real measured data, usually do not match the predicted data from the finite 

element model. Thus, the updating process is used to make these modal 

parameters to match. Actually, the creation of a finite element model attempts to 

achieve modal parameters identical to those of the prototype structure. Ideally, 

the updating process will reveal physically realistic changes that need to be 

made to the finite element model such that the predicted modal parameters more 

closely match the measured values.  

The updating process of the FE model is accomplished by modifying some 

of its parameters until it represents the prototype structure better. Thus, it is 

necessary to adjust some parameters of the finite element model until the 

estimated modal parameters, like natural frequencies and mode shapes, match 

the real measured data of the structure [1]. Usually, parameters like moduli of 

elasticity or density are modified. These ideas are further explained in Chapter II. 

So far the theory of model updating has been verified using simulated data (data 

predicted using a computer’s software) [1].  

To define the computer model accurately, a large number of parameters 

(physical and geometric data) may be required. Using the geometry and some 

material properties of a structure that are well known and easily measured (e.g., 

density), a similar finite element model consisting of these properties can be 

created. Nevertheless, the modal parameters of the finite element model are not 

similar to the real structure as formerly discussed; thus, the finite element model 

is inaccurate. Usually, there will be a mismatch in the measured modal 

parameters since the computer model is based on idealizations and 

assumptions. 
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It is crucial to acquire high quality dynamic property data from the 

experiment, which is not so difficult today since the technology has been 

improved and the equipment used is superior. However, only a small number of 

useful modal parameters are available from a modal test, order of magnitude 

1 210 10  times less than the parameters of the real structure [2] due to 

equipment constraints. Only a small number of modal parameters can be 

measured during an experimental test, which is proportional to the number of 

measurement equipment mounted on the structure. This parameter inequality 

leads to an underdetermined problem in that there are typically many more 

parameters in the finite element model that are of questionable accuracy.  

Moreover, the ultimate purpose of model update is to use this model in the 

future for damage detection. In this process the updated model is used as a 

reference point, so that the new modal parameters of the prototype but damaged 

structure can be compared and the damage can be localized. This means that 

some parameters of the damaged structure are in error, although they are 

measured during the experiment. The damage identification process is used to 

find these parameters, which are unknown. This enhances the underdetermined 

problem that was discussed before. 

B. LITERATURE REVIEW 

As formerly said, there is confidence in the accuracy of the measured 

natural frequencies of the structure. Therefore, the resonant frequency data are 

used for FE model update and damage detection [3]. During the oscillation of a 

structure at one of its resonant frequencies, the point of the structure that is 

measured has maximum displacement. Consequently, by artificially exciting the 

structure and plotting the dynamic displacement over the frequency, the resonant 

frequencies of the structure can be accurately identified over the measured 

frequency domain. Unfortunately, the number of measurable natural frequencies 

is not large enough, since it is difficult to measure the higher natural frequencies 

of a real structure, to use this information in the updating process.  
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One technique to expand the resonant frequency dataset is to physically 

alter the boundary conditions of the structure [4]. This is feasible by applying an 

actual pin or adding mass at selected points of the structure. This technique is 

one of the first to alter the structure and is called “perturbed boundary condition 

(PBC)” [4]. It is obvious that each time a different boundary condition is applied a 

physical modification of the structure occurs. Taking into consideration the 

inexact characterization of joints, connections, and the inaccurate physical 

boundary conditions, the resonant frequency dataset may not be so accurate. 

Moreover, it is difficult, expensive, and time consuming to implement this 

technique in practice. 

Recently another more effective method was proposed, the method of 

“artificial boundary conditions (ABC)” [2], [5]. The word artificial is used because 

altered boundary conditions are applied to the test data computationally. This 

artificial boundary condition is also applied to the finite element model [2]. There 

is no need to actually apply or modify the prototype structure; thus, this method is 

fast, cheap, and easy. Using this method, a large number of resonant frequency 

datasets can be extracted, and thus the expansion of the set of measured 

resonant frequencies is feasible [2]. The additional natural frequencies that 

correspond to any ABC system that is chosen can be obtained from any square 

frequency response function (FRF) matrix measured in a test. These measured 

frequencies correspond very accurately to the natural frequencies that would be 

calculated by physically applying the boundary conditions at the structure; see 

[2]. For example, for a structure with five points of measurement, there are 31 

different structure configurations (ABC sets) to calculate the resonant 

frequencies. The artificial pins can be posed at any possible combination of the 

measured points. The only limit is in the number of measurement equipment that 

can be mounted on the structure, but even if this number is small, the number of 

possible structure configurations is large enough, as demonstrated in the 

previous example. 
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Alternatively, a recent study [6] uses anti-resonant frequencies rather than 

the resonant frequencies for model updating. In this study the location of the pin 

that was used in the generation of the anti-resonant frequency dataset was 

determined arbitrarily. An anti-resonant point is a point that does not move during 

the oscillation of the structure for a specific frequency. This frequency is called 

the anti-resonant frequency. Because a systematic approach for an effective 

structure configuration was not used, this technique is not easily applied to 

different structures. Moreover, the accurate measurement of the displacement of 

an anti-resonant point is susceptible to noise error because its value is close to 

zero. Thus, the identification of resonant frequencies is more accurate than the 

anti-resonant frequencies. 

In [7], the genetic algorithm methodology is introduced in order to identify 

which artificial boundary condition frequencies are optimal for model updating. 

This methodology actually is used to optimize a globally given objective function. 

Moreover, in [8], the same methodology is used successfully for updating the 

computer model based on measured dynamic properties. However, this process 

is satisfactory for a small number of unknown parameters, a problem that is 

tackled by incorporating the eigensensitivity-based updating method. 

A new method to identify the parameter-specific optimal artificial boundary 

condition set was introduced by Gordis [9]. This method is based on the QR (Q is 

an orthogonal matrix and R is an upper triangular matrix) decomposition with 

column pivoting. According to this method, to identify the damage in the 

structure, a square composite sensitivity matrix should be created. The concept 

and formulation of the sensitivity matrix is covered later in this thesis. Each row of 

each sensitivity matrix for the different artificial boundary condition set can 

identify the damage associated with a specific location. At the end of this method, 

the composite sensitivity matrix will have a different row for each location of 

potential damage to the model; thus, the damage identification is more effective 

and accurate.  
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Generally speaking, two different theories exist regarding how to create 

the elements of the finite element model. The first is the Euler-Bernoulli theory, 

and the second is the Timoshenko theory [10]. The main difference between 

these two theories is that in the Euler-Bernoulli’s theory, the plane sections of the 

elements remain plane and normal to deformed longitudinal axis. In the 

Timoshenko’s theory, by contrast, the plane sections of the elements remain 

plane but not normal to deformed longitudinal axis. Timoshenko’s theory includes 

the rotatory inertia and shear deformation effects of the beam’s elements.  

C. SCOPE OF THESIS 

This research seeks to extend the possibility of using experimental data 

for model updating and damage detection. Previous methods used for model 

update and damage identification using simulated data do not produce correct 

result using experimental data.  

Initially an investigation is conducted to decide which data are best to be 

used for the needed purposes. Then, new methods for both model update and 

damage identification are introduced and investigated. 

D. NOTES ON THESIS 

In this thesis, the prototype structure which is used for the experiment is a 

beam. For simplicity reasons and brevity, a 2-D Euler-Bernoulli beam formulation 

is used to simulate the prototype structure. 

The finite element model formulation and any other computational 

research is performed in MATLAB [11] . The Pulse Reflex software of Bruel & 

Kjaer Company [12] is used for recording the experimental data. 
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II. THEORY 

A. GOVERNING VIBRATION EQUATION 

In theory, a structure has an infinite number of degrees of freedom (DOF). 

Nevertheless, the finite element model is created with a finite number of degrees 

of freedom, (n), enough to simulate accurately the structure. A dynamic system 

under an excitation is described by the governing equation: 

  

           M x C x K x f t    , (2.1) 

 

where  M  is the mass matrix,  K  is the stiffness matrix and  C  is the damping 

matrix. Each matrix has size n x n. The vector   f t  is the externally applied 

excitation on the structure. The displacement at the corresponding points of the 

structure is  x , the first derivative of the displacement with respect to time is  x  

(velocity), and the second derivative of the displacement with respect to time is 

 x  (acceleration). The mass and stiffness matrices are easily derived while the 

damping matrix is not, since the mechanism of energy dissipation is not yet well 

understood. By omitting the damping matrix in Equation (2.1), the derivation of 

the undamped equation of motion is performed: 

 

        M x K x f t 
.  (2.2) 

 
In the case of an unforced (free) vibration, the Equation (2.3) is obeyed: 

 

      0M x K x   .  (2.3) 

 
The general solution of Equation (2.3) is of the form: 

 

    ji t
x e


 

,  (2.4) 
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where j  are the resonant frequencies. Substituting (2.4) in (2.3) leads to: 

 

     2    
.  (2.5) 

 

The solution of Equation (2.5) yields n eigenpairs, where the eigenvalues 

of the solution are the natural frequencies j , and the eigenvectors of the 

solution are the natural modes   . 

The eigenvectors of the solution of (2.5) are arbitrarily scaled. Similarly, 

the eigenvectors are scaled such that: 

 

      


      ,  (2.6) 

 

which results in 

 

      iK diag 


    ,  (2.7) 

 

where Φ is the mass normalized eigenvector matrix. 

Usually, if damping is taken into consideration, the assumption (2.8) is 

used: 

 

     * *C K M  
,  (2.8) 

 

where   and   are real constants. This is proportional damping. 

If this assumption has been made then the damping is proportional to 

stiffness and mass matrices, and if mass normalized mode shapes are used, 

 

    C


   =  2 i idiag   ,  (2.9) 

 

where i  is the damping ratio of each mode.  
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B. TWO DIMENSIONAL EULER–BERNOULLI BEAM 

In this research, the finite element model is constructed by two–

dimensional Euler–Bernoulli beam elements. Following, the derivation of the 

stiffness and mass element matrices is performed. 

1. Stiffness Matrix Construction 

From elementary theory, as in [13], a beam under shearing and rotational 

loading (Figure 1) has the lateral displacement of cubic order, so: 

 

 

1

1

1 2 3 4

2

2

y

u N N N N
y





 
 
 

  
 
  

 ,  (2.10) 

 

where u is the displacement of a general point in the bar and iN  are the shape 

functions. 

 

Figure 1.  Beam under Shearing and Rotational Loading. 

The shape functions are expressed as [13]: 

 
2 3

1 2 3

3 2
1

x x
N

L L
  

   (2.11) 
2 3

2 2

2x x
N x

L L
  

   (2.12) 
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2 3

3 2 3

3 2x x
N

L L
 

   (2.13) 
2 3

4 2

x x
N

L L
 

.  (2.14) 
 

Therefore, the strain displacement matrix [B] is [13]: 

 

      2 3 2 2 3 2

6 12 4 6 6 12 2 6x x x x
N

L L L L L L L L

  
            

 .  (2.15) 

 

So, the beam element stiffness matrix [13] is: 

 

       e

V

K EI dV


    ,  (2.16) 

 

where dV  is the volume of the element. 

Combining (2.15) and (2.16) results in the stiffness element matrix: 

 

 

2 2

2 2

12 6 12 6

6 64 2

12 6 12 6

6 62 4

e

L L L L

L LEI
K

L L L L L

L L

 
 

 
   
 

 

 . (2.17) 

 

2. Mass Matrix Construction 

To simulate more realistically the prototype structure’s mass undergoing 

acceleration, Equation (2.18) [13], which results in a continuous inertia 

distribution, is used: 

 

     
e

V

M N N dV


   ,  (2.18) 

 

where ρ is the material density. 



 11 

Substituting the shape functions (2.11)–(2.14) into (2.18) and integrating 

over the volume leads to the element mass matrix: 

 

 
22

2 2

156 54 1322

13 322 4

420 54 13 156 22

13 3 22 4

e

LL

AL L LL L
M

L L

L L L L



 
 

 
 
 
  

 .  (2.19) 

 

C. ANALYTICAL AND OMITTED COORDINATE SETS 

We can express Equation (2.3) more explicitly as: 

 

 

 

 

 

1 111 1 11 1 1

1

n n

n nn nn nn nn n

x t x tM M K K f

M M K K fx t x t

        
                 
                

 . (2.20) 

 

A continuous system of infinite degrees of freedom is approximated with 

the Equation (2.20) as a system of n degrees of freedom. During a real 

experimental test only a small number of measured degrees of freedom are 

available. The measured coordinates—i.e., the location where the 

instrumentation is placed and the degrees of freedom that they can measure 

(displacement or rotation)—are called the analytic set (ASET). The rest of the 

unmeasured degrees of freedom are the omitted coordinate set (OSET). 

Assuming steady-state harmonic excitation and response, Equation (2.20) 

becomes: 

 

 

 

111 1 11 1 1

2

1 1

n n

n nn n nn nn

x tK K M M f

K K M M fx t

       
       

         
                

 , (2.21) 
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where Ω is the frequency of the harmonic excitation. Equation (2.21) includes 

measured and unmeasured degrees of freedom. By taking into account ASET 

and OSET coordinate sets, Equation (2.21) can be so partitioned and becomes: 

 

2

0

aa a

oa

K K M M x f

K K M M x f

   

   

        
        

       
 , (2.22) 

 

where the subscript “a” denotes the analytical coordinates and the subscript “o” 

denotes the omitted coordinates. Assuming no excitation on the omitted 

coordinates, Equation (2.22) results in: 

 

2

0

aa a

oa

K K M M x f

K K M M x

   

   

        
        

      
 . (2.23) 

 

Generally speaking, Equation (2.23) represents a system of two sets of 

equations. The solution is of the form: 

 

           2 0a aK x K x M x M x            . (2.24) 

 

Solving for  0x  results in: 

 

   
1

2 1 1 2 1

0 00 00 00 00oa oa ax K K M x


                . (2.25) 

 

It is generally known that: 

 

 
 

 
1 1

A Adj A
Det A


  ,  (2.26) 

 

where  Det A  is the determinant and  Adj A  is the adjoint of matrix  A . So 

from (2.25) 
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1
2 1 2 1

00 00 00 002 1

00 00

1
K Adj K

Det K


 


                

 , (2.27) 

 

it is obvious that for some values of Ω, 

 
2 1

00 00 0Det K       .  (2.28) 

 

Therefore, the inverse matrix does not exist for those frequencies. 

This means that the solutions,  of Equation (2.29): 
 

   2 0oo ooK M   ,  (2.29) 

 

are the natural frequencies of the OSET system. Thus, when the ASET 

coordinates are constrained to the ground, the eigensolution of Equation (2.29) 

can be derived. 

D. REDUCED ORDER MODEL 

The impedance of a structure or dynamic stiffness, (Z), is the resistance in 

motion of this structure, when subjected to a harmonic excitation, and it is 

dependent on the frequency of the harmonic excitation. The inverse of the 

impedance, 
1(Z) , is called the frequency response function (FRF). The symbol 

that usually is used to represent the inverse of the impedance is (H). In a real 

experiment only a small number of degrees of freedom can be measured, since 

the number of transducers is finite, and thus, a reduced order model arises. The 

impedance of the reduced order model is nonlinearly dependent on the 

impedance of the full order model with infinite number of degrees of freedom [2]. 

This results in the following FRF matrix (2.30): 

 

  aa ao

oa oo

H H

H H

 
   

 
 ,  (2.30) 
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where as previously defined, the “a” subscript denotes the analytic 

measurements and the “o” subscript denotes the omitted measurements. 

Consequently, [ aaH ] represents an exact dynamic reduced model [2]. The 

impedance of the structure is related to the frequency response function, as 

mentioned before, with the inverse operation. Thus: 

 

0

0

aa oa aa oa

ao oo ao oo

Z Z H H I

Z Z H H I

     
     
    

 .  (2.31) 

 

Solving for [ aaH ] results in: 

 

 
1

1

aa aa ao oo oaH Z Z Z Z


     .  (2.32) 

 

Rearranging Equation (2.22) in terms of impedance results in: 

 

0

aa ao a a

oa oo o

Z Z x f

Z Z x

    
    
   

 .  (2.33) 

 

Solving Equation (2.32) for { }af  results in [5]: 

 

   1

a aa ao oo oa af Z Z Z Z x     .  (2.34) 

 

From a comparison of Equations (2.32) and (2.34), it is obvious that the 

term 
1

aa ao oo oaZ Z Z Z    is common. This implies that the measured frequency 

response function extracted from a real modal experiment is equivalent to the 

inverse of an impedance matrix extracted from a dynamically reduced model. 

Furthermore, the elements of the term, 
1

ooZ 
, will be singular at the natural 

frequencies of the OSET. Thus, from Equation (2.32) the elements of the term, 

1

aaH 
, will also be very large (singular) at the same natural frequencies [2]. We 

may conclude that, by using artificial boundary conditions on the finite element 
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model, we can extract the same natural frequencies as we would if actual 

boundary conditions had been applied at the same locations. 

E. CAUCHY’S INTERLACE THEOREM  

Consider a matrix A, of dimension nxn, and a submatrix H, of dimension 

mxm. In general, Cauchy’s interlace theorem is used to identify the relationship 

of the eigenvalues between the submatrix H and matrix A. From the analysis 

made in [14], we can assume that the matrix A has eigenvalues: 
1 2 n      

and the submatrix H has eigenvalues: 
1 2 m     . 

Then for j = 1, 2, … , m: 
 

( )j j j n m j n m j j               
, 

 

and for k = 1,2, … ,n  
 

( )k n m k k k k k n m               
. 

 

This simply means that eigenvalues of H submatrix    are an inner 

bound on eigenvalues of matrix A. To demonstrate the previous concept, a 

simple example is provided. Assume the following matrix A : 

 

0 0

0

0 0

A



 



 
 
 
  

, with eigenvalues 

 

 

2 2

1

2

2 2

3

0

  



  

  



 

, 

 

and the submatrix: 
 

0

0





 
   

 
 , with eigenvalues 

1

2

 

 

 


  . 

 

Then the following is true: 
 



 16 

1 1 2 2 3         . 

 

In Figure 2, a graphical representation is also provided. 

 

Figure 2.  Graphical Representation of Cauchy’s Theorem. 

This theorem is going to be used later to validate the experimental set up 

process, and the measured natural frequencies. 

F. FREQUENCY RESPONSE FUNCTION 

As previously outlined, the inverse of impedance, 
1(Z) , is the frequency 

response function. This frequency response function is determined 

experimentally by measuring the excitation of a DOF and the response of the 

same, or any other DOF, at the same time. By examining the FRF much modal 

information can be extracted, including the amplitude and the phase of the 

response at a specific DOF, the natural frequencies, the damping ratios, and the 

mode shapes of the structure. If the excitation force is applied at the same DOF 

as the response DOF, then this FRF is called a driving point FRF, and the plot of 

such FRF always has an anti-resonant frequency after each resonant frequency. 

It is obvious that the measurement is made in time domain initially, but through 

fast Fourier analysis (FFT), the measured time histories are converted to 

frequency domain. As previously said: 

 

   
1

Z H


          .  (2.35) 
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In terms of impedance, Equation (2.21) can be written as: 

 

 

 

111 1 1

1

n

n nn nn

x tZ Z f

Z Z fx t

    
         
         

 ,  (2.36) 

 

where impedance is in the frequency domain and is equal to: 

 

  2Z K M j C           .  (2.37) 

 

Assume a coordinate transformation, which is of the form: 

 

    x q   ,  (2.38) 

 

where    is the mode shape matrix and  q  is modal coordinate. 

Taking into consideration (2.6), we substitute (2.38) in (2.36) which results 

in: 

 

     Z q f   .  (2.39) 

 

Substituting (2.37) into (2.39) and premultiplying by  


  results in: 

 

                    2K M j C q f
              

 
 . (2.40) 

 

From (2.6), (2.7), and (2.9), the previous equation (2.40) becomes: 

 

     2 2 2
T

i ij q f          .  (2.41) 

 

However, in Equation (2.41) the first term is the modal impedance matrix 

[Z], which is diagonal. Solving for  q  and substituting back to (2.38) results in: 
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       
2 2

1

2i i

x f
j  


  

    

 . (2.42) 

 

Thus, the frequency response function can also be defined as: 

 
 

     
2 2

1

2i i

H
j  


     

    

 , (2.43) 

 

or in summation form: 

 

 
  modes

2 2
1 2

T
k k

k k kj  

 
       

  .  (2.44) 

 

Depending on the DOF at which the excitation force is applied, and the 

DOF where the response is measured, Equation (2.44) can be written as: 

 

 
modes

2 2
1 2

k k

i j

ij

k k kj  

 
  

  
  ,  (2.45) 

 

where the subscript “i” denotes the measured DOF by applying an excitation 

force at “j” DOF. 

G. SYNTHESIS FOR ARTIFICIAL BOUNDARY CONDITIONS  

Assuming the free-free beam of Figure 3, with N nodes, the frequency 

response function equation of steady-state response is: 

 

    ( ) ( ) ( )X H F     ,  (2.46)  

 

where  ( )X   is the displacement of each node,  ( )H   is the FRF matrix, and 

 ( )F   is the amplitude of the force at each node. All of the quantities in 
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Equation (2.46) are dependent on frequency ( ) ; however, from now on, the 

frequency-dependency will be omitted for clarity. 

Figure 3.  Nodes of Free-Free Beam. 

By applying artificial boundary conditions (pins) at nodes 
1 ,KC C K N  , 

Figure 4, Equation (2.46) can be rewritten as: 

i ii ic i

c ci cc c

X H H F

X H H F

    
    

    
 , (2.47) 

where the subscript “c” denotes the nodes with the artificial pin, and the subscript 

“i” denotes the rest of the nodes. 

Figure 4.  Beam with Boundary Conditions. 

The imposition of boundary conditions restrains the displacement of the 

corresponding node. Thus: 

   0cX   . (2.48) 

Using Equation (2.48), the bottom row of Equation (2.47) yields: 

         * 0c ci i cc cX H F H F    , (2.49) 
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where the superscript “*” at the force vector indicates that these are forces of 

synthesis. Solving for that force vector, (2.49) becomes: 

 

      
1*

c cc ci iF H H F


   .  (2.50) 

 

The top row of Equation (2.47) results in: 

 

       * *

i ii i ic cX H F H F   .  (2.51) 

 

Substituting Equation (2.50) in (2.51) yields: 

 

          
1*

i ii ic cc ci iX H H H H F
  

 
. (2.52) 

 

Finally, the synthesized FRF matrix for the artificially constrained beam is: 

 

      
1*

ii ii ic cc ciH H H H H


     .  (2.53) 

 

Equation (2.53) is called the synthesis equation. By applying an artificial 

boundary condition at a structure, and using the synthesis equation, the 

structure’s new natural frequencies are calculated. 

H. SENSITIVITY METHODS 

In structural dynamics, a method known as sensitivity analysis, which 

applies small changes in the design parameters, is used to predict the amount of 

change in the dynamic response characteristics of a structure. A change in the 

parameter of a structure alters the structure’s dynamic response. However, the 

magnitude of this alteration depends on the magnitude of the alteration of the 

parameter, and which parameter is altered. This dependency is quantified using 

sensitivity analysis. Usually, physical parameters of the structure, like bending 

rigidity (EI), density, thickness, and so forth, are stated as design or updating 

parameters, and are subjected to changes.  
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Assuming a change in an eigenvalue 2

i i  , with respect to a parameter 

jp , then the sensitivity, ijS , allows the prediction of the rate of that change using 

equation (2.54): 

 

i
ij

j

S
p





 .  (2.54) 

 

By slightly modifying (perturbing) an updating parameter of the structure, 

the eigenvalues of the structure change. Rewriting Equation (2.54) using the 

eigenvalues of the perturbed system, *

i , results in: 

 
* *(p p )i i ij j jS    ,   (2.55) 

 

where *p j
 is the perturbed value of the updating parameter. 

Sensitivity methods are typically used in relating errors in finite element 

predictions of natural frequencies to physical parameters in the model. This 

method is called sensitivity-based finite element model (FEM) updating and it is 

discussed further later. Conducting a vibration test of a structure, the 

experimental measured values of natural frequencies, 
(x)

i  (or eigenvalue, 
(x)

i ), 

can be obtained. From the finite element model, the predictions of these natural 

frequencies, 
(a)

i  (or eigenvalue, 
(a)

i ), have been calculated. Using the sensitivity 

for mode “i” and for parameter “j”, the relation of the error between the measured 

and the predicted value can be identified from: 

 
(x) (a)

i i i ij jS p       .  (2.56) 

 

In general, the modal parameters of the structure, like mode shapes, 

natural frequencies, eigenvalue sensitivity, and eigenvector sensitivity, are the 

inputs of the system that will be solved. The unknown is the difference of the 

updating parameters. So, the following system (2.57) has to be assembled: 
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    S p   ,  (2.57) 

 

where  p  is a set of alterations of the updating parameters,    is a set of 

differences between dynamic behavior in the analytical and the experimental 

models, and  S  is the sensitivity matrix of the finite element model.  

Different sensitivity analysis techniques exist. Generally speaking, they 

can be divided into techniques using frequency response functions and 

techniques using modal data (eigenvalues and eigenvectors). 

1. Methods Using Frequency Response Data 

Often, an actual experiment of a prototype structure results in a small 

number of resonant frequencies in the measured frequency range. To address 

this issue, researchers can use response data directly from the experiment. A 

major advantage of this technique is that there is no need to perform modal 

identification, which can be inaccurate and is time consuming. This alternative 

method uses the differences between analytical predictions and experimental 

measurements of frequency response functions in order to identify the sensitivity 

of a structural parameter [15], [16]. In this case, Equation (2.57) becomes: 

 

      S p H      ,  (2.58) 

 

where 

 

        
expFE

H H H     ,   (2.59) 

 

where   
FE

H   is the frequency response function calculated by the finite 

element model, and   
exp

H   is the frequency response function measured by 

the experiment. 
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At a given frequency point the sensitivity of the “i” DOF due to a change of 

the “j” updating parameter is given by [17]: 

 

           2

exp

T

ij FE
j j

S H M K H
p p

   
   

         

 . (2.60) 

 

To find the minimum difference between the finite element predictions and 

the experimental values at specific frequencies, an iterative solution is used by 

changing an updating parameter. 

Then the number of sensitivity matrices that will be used is specified by 

the user, and an overdetermined system arises: 

 

 

 

 

 

 

 

 

1 1

2 2

n n

S H

S H
p

S H

 

 

 

  
  
     

 
 

 
   

 .  (2.61) 

 

However, it is very important to choose the most useful frequency points 

for the updating process; otherwise, Equation (2.58), even if it seems 

overdetermined, can have linear dependent rows and ends up being 

underdetermined. 

2. Methods Using Eigenvalues And Eigenvectors 

Next, methods using eigenvalues and eigenvectors are provided. 

a. Eigenvalue Sensitivity Method 

To match the dynamic behavior predictions of the finite element model 

with the dynamic behavior of the structure, a more common procedure is typically 

used. This procedure is based on the alteration of certain updating parameters of 

the finite element model, such that the natural frequencies of the model more 

closely match the experimental natural frequencies.  
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According to the eigenvalue sensitivity method, the following procedure is 

followed [18]: 

 

    0i iM    ,  (2.62) 

 

where i  and  i  are the solutions to Equation (2.5), and  i  from (2.6) is mass 

normalized. 

Differentiating (2.62) with respect to an updating parameter “p” leads to: 

 

     0i i
i i iM

p p p p

 
  

    
            

 . (2.63) 

 

Premultiplying (2.63) by  
T

i  results in: 

 

                  0
T T T Ti i

i i i i i i i i i M
p p p p

 
        

        
                     

. (2.64) 

 

Using Equations (2.62) and (2.6), Equation (2.64) is reduced to: 

 

         0
T T i

i i i i i
p p p


   

      
               

 . (2.65) 

 

Rearranging (2.65) leads to: 

 

   
Ti

i i i
p p p


  

   
     

 .  (2.66) 

 

Depending on which parameter is altered, the stiffness or mass, Equation 

(2.66) can be further reduced. In this research, only changes to the stiffness 

parameter are demonstrated, and so Equation (2.66) is reduced to: 

 

   
Ti

i i

j jp p


 

  
  

   

 ,  (2.67) 



 25 

 

where “Δp” represents the difference of the updating parameter between 

experimental and analytical, “ΔK” is the difference of the stiffness global matrix 

between the initial and the perturbed structure, and the subscript “i” is the rate of 

change at this eigenvector due to a change at “j” updating parameter. 

The right-hand side of Equation (2.67) is the sensitivity of the structure; 

thus: 

 

   
T

stiffness i iS
p

 
 

   
.  (2.68) 

 

By constraining the structure at a specific DOF through the use of the 

artificial boundary condition approach, i.e., applying the boundary condition 

computationally, we find the stiffness sensitivity values near that DOF are much 

higher in comparison to the rest [19]. This concept was used in [9] in order to 

determine which rows of the stiffness sensitivity matrix should be used in the 

damage identification process of the finite element model. 

b. Eigenvector Sensitivity Method 

The development of the eigenvector sensitivity matrix derivation is 

generally attributed to Fox and Kapoor [20], with a significant later contribution by 

Nelson [21] and his simplified method. The reader can refer to [22] for more 

literature about contributors to the specific subject. 

Substituting Equation (2.67) into (2.63) results in [23]: 

 

   i i
i iM

p p p

 
 

    
             

. (2.69) 

 

If all the eigenvectors are available, then the derivative at the left-hand 

side can be written as: 
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  i c
p

 
   

,  (2.70) 

 

which indicates that the derivative is a linear combination of eigenvector matrix 

   and some constant coefficients  c  that have to be determined. Combining 

(2.69) and (2.70) and premultiplying with  
T

  yields: 

 

         i
i iM c

p p


 

   
           

. (2.71) 

 

However, it is known that: 

 

      i iM 


        ,  (2.72) 

 

where [Λ] is the diagonal eigenvalue matrix. From matrix algebra, the Equation 

(2.72) implies that, there is a unique solution for all the coefficients except from 

the ith coefficient. The solution is of the form: 

 

   
,

i
k i

k i

p p
c i


 


 





 
    

  


 . (2.73) 

 

In the case that the model has closely spaced eigenvalues, then the 

prediction of changes in eigenvectors will not be available, because, as is 

obvious from Equation (2.73), in these cases numerical ill-conditioning will occur. 

Thus, the eigenvector derivative is not useful.  

Substituting (2.73) into (2.70) yields to: 

 

       i
k k i i i i i

k i

c c P c
p


  



 
    

 
 , (2.74) 
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where  iP  vector is uniquely determined. However, as mentioned before, not all 

the coefficients are known yet. In order to determine ic  coefficient, the 

differentiation of Equation (2.6) is required: 

 

     1i i
p

 

 


,  (2.75) 

 

which results in: 

 

       2 0i
i i i

p p


  

    
         

. (2.76) 

 

Assuming no changes in mass, Equation (2.76) becomes: 

 

    0i
i

p




  
  

 
.  (2.77) 

 

Combining Equations (2.74) and (2.77) finally leads to: 

 

    i i ic P


    .  (2.78) 

 

The most important conclusion in Nelson’s research [21] is that any vector 

that satisfies Equation (2.69) can be used instead of the unknown  iP  vector. 

That is valid, since the eigenvector derivative is orthogonal to the eigenvector 

[23]. Following, a process to identify a non-trivial solution for the unknown vector 

 iP  is demonstrated [23]: 

 

     

     

     

111 1 13

1 2 1

331 3 33

0

0

0

i i ik

i i i kk k k

i i ik

x

x

x

  

  

  

             
    

             
                 

. (2.79) 

 

Solving for a non-zero kx  results in: 
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   

   

   

 

 

 

11 13 1
1

1 3
2

31 33 3

i i i k

i i k ik k kk

i i i k

x
x

x

  

  

  

          
    

              
              

 . (2.80) 

 

However, the kth row can be eliminated since it is linearly dependent on 

the (n-1) remaining rows, which results in a (n-1) system: 
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  

              
     

             
 . (2.81) 

 

Substituting in (2.81) the arbitrary  iP  results in: 
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                 

     
             

        

 , (2.82) 

 

which has a unique solution: 
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P
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    
   

 

 .  (2.83) 

 

From Equation (2.82) 1P , 3P  are evaluated, and from Equation (2.83) the 

remaining term ic  is evaluated. So by calculating the eigenvalue sensitivities, 

Blelloch [23] proposes an algorithm based on the Equations (2.69)–(2.83) for 

calculating the eigenvector sensitivities.  

I. COMPOSITE SENSITIVITY MATRIX 

In this research, Equation (2.67) is thoroughly used. Initially for the model 

updating method, as updating parameters, the stiffness value (EI) of each finite 



 29 

element is used. The examinable output of Equation (2.67) is the difference of 

the experimental and estimated natural frequencies. So, equation (2.84) arises: 

 

     2 2 2

exp [ ]ana S EI        ,  (2.84) 

 

where 
exp  is the experimentally measured natural frequency, ana  is the FEM 

estimated natural frequency, and vector ΔEI contains the change in stiffness of 

each element, corresponding to either errors in the finite element model or 

damage in the test article. To match the experimental natural frequencies with 

the predicted, we must apply the changes of vector ΔEI at the FEM. The number 

of rows of the sensitivity matrix represents the number of used modes, and the 

number of columns represents the number of potential damage locations. 

For a specific structural configuration, the sensitivity matrix is used to 

relate the amount of change at structural dynamic properties (natural 

frequencies) due to a change at an updating parameter (stiffness). For example, 

using the sensitivity matrix, the new natural frequencies of the structure are 

calculated, by perturbing the stiffness of an element at the FEM. By applying an 

artificial boundary condition (pin), the structural configuration changes. Now if the 

stiffness value of the same element is perturbed by the same amount, the natural 

frequencies will be different. That change depends on the distance of the 

perturbed element from the pin. Thus, in this case the sensitivity matrix is 

different from the initial configuration. That is the case for every different 

structural configuration. This concept is further demonstrated in a later chapter.  

The creation of the sensitivity matrix is one of the most important and 

difficult procedures. In [9] it was shown that the QR decomposition process can 

create a reliable composite sensitivity matrix. This sensitivity matrix might have 

rows from different ABC sets. The formed sensitivity matrix must include rows 

from ABC sets that can identify damage at each element of the finite element. 

This is expressed mathematically as [2]: 
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 ,  (2.85) 

 

where subscript “base” means the initial finite element configuration with no 

artificial boundary conditions. 

If the stiffness value (EI) of an element in the finite element model has 

been decreased, simulating the occurrence of damage in a structure, then the 

resonant frequencies will also change. This decrease in stiffness simulates 

damage to the structure at the specific element (location). Consequently, using 

Equation (2.85) where 2{ }  has changed but is known, we have the same 

sensitivity matrix [S], and solving for {dEI}, we can identify the damage.  

J. CONCLUDING REMARKS 

The background to the creation of a finite element model, for a Bernoulli-

Euler 2-D beam, has been set out. The artificial boundary condition theory and 

the synthesis of the impedance matrix have also been described in this chapter. 

This theory is thoroughly used and demonstrated in this research. This chapter 

has also demonstrated so far the theory behind the different sensitivity methods, 

emphasizing the use of eigenvalues in the sensitivity matrix derivation, the 

method used in this thesis.  

Finally, the basic concept of model updating and damage identification 

has been highlighted, and the significance of the creation of a reliable sensitivity 

matrix has been made clear. 
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III. EXPERIMENTAL SETUP AND INITIAL INVESTIGATION 

A. DIFFICULTIES USING EXPERIMENTAL DATA 

The methods analyzed in Chapter II, for model updating and damage 

detection, have been thoroughly verified using computational (simulated) data. 

That means data usually obtained from a vibration test of a potentially damaged 

structure are replaced by simulated versions from a finite element model of the 

structure, with damage represented as a reduction in bending rigidity (EI) at a 

specific element. However, when experimental data are used, there are some 

issues that make the process difficult, and often the theory does not work as 

expected. These issues can be noise from the experiment that alters the 

measured data, limited number of measured locations, limited bandwidth of 

measurement, simulation of connections or boundary conditions, and even the 

finite element model used. This thesis, investigates a way to overcome these 

difficulties, starting with the difficulties associated with model update. 

B. EXPERIMENTAL SETUP  

The prototype structure used in this research was an Aluminum 6061 

beam with properties shown in Table 1. 

Table 1.   Properties of Prototype Structure 

Length cm (in) 182.88 (72) 

Width cm (in) 4.9 (1.93) 

Height cm (in) 0.947 (0.373) 

Modulus of elasticity MPa 
(psi) 

68947.5729 
(10000000) 

Density Kg/m3 (lbm/in3) 2698.79 
(0.0975) 

 

To avoid potential discrepancies from boundary conditions, the beam is 

tested as free-free, meaning that no boundary conditions applied.  
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The beam was modeled using 16 2-D Bernoulli-Euler beam elements, and 

the measurement points on the structure matched the node points of the finite 

element model.  

The odd-numbered DOF of the finite element model are translation, and 

the even-numbered DOF are rotation. Response transducers (accelerometers) 

are set up at all the translational DOF, except from the first and the last DOF, 

corresponding to the actual ends of the beam (1,33 DOF). In total, 15 

transducers were used and were placed at nodes 2–16. Henceforth, these nodes 

are referred to as “all” or the “rest” unless something different is mentioned.  

The experiment was conducted by exciting all nodes using a modal 

hammer. Each time the frequency response function of all the nodes was 

measured using the Reflex Pulse software of Kjaer, Bruel company [12]. To 

proceed from one node to another an average of five successful measurements 

was taken. After each excitation, an external absorber was applied at the beam 

to absorb the remaining energy of the excitation, and enough time was given for 

the beam to come to rest in order to get as accurate a measurement as possible. 

The beam was hung from the ceiling using elastic cords at the nodal 

points (locations with zero displacement) of its first vibrating mode. Great 

consideration was given in the way that the beam was attached at the cords, so 

that they did not restrain any movement of the beam. Moreover, the height from 

which the bar hung from the ceiling was long enough so that the frequency of the 

pendulum mode of the whole system was extremely small and far from the first 

elastic mode frequency of the beam.  

Last, but not least, special care was given such that the cables of the 

transducers did not contact or restrain the movement of the beam and did not 

add mass on the system. 

The resolution of the hammer test was set to 0.3125 Hz, and the 

measured bandwidth was 0–1000 Hz. From the measured FRF’s the frequencies 

corresponding to the peak values of response were identified and used as the 
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natural frequencies. Generally speaking, these values are not exactly the same 

as the resonant frequencies, but they are very close due to the very low levels of 

damping.  

C. CREATION OF FINITE ELEMENT MODEL 

The stiffness matrix for each element was created using Equation (2.18) 

and then added to form a global stiffness matrix. In the same way, the global 

mass matrix was created using Equation (2.20). However, the mass of the 

transducers and their mass moment of inertia are significant; thus, the global 

mass matrix must be altered. Each transducer was represented as a translational 

mass and rotational moment of inertia and added at the diagonal elements of the 

global mass matrix. In this case, the first two modes of a free–free beam are 0 

since they are rigid body modes. In the rest of the analysis, the first flexible mode 

is referred to as mode 1. 

The measured FRF is a matrix of size 15x15, since there are 15 

transducers, for all the measured frequencies (3201 points). In this case, in order 

to create the FRF of the free–free beam and identify the peak values that 

correspond to the resonant frequencies, the average value of the diagonal 

elements of each matrix was taken. 

An initial check of how accurately the finite element model represents the 

beam in terms of resonant frequencies resulted in the following (Table 2 and 

Figure 5): 
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Table 2.   Initial FE Resonant Frequencies. 

 Experimental 
Resonant  
Frequencies 
(Hz) 

FE Model  
Resonant 
Frequencies 
(Hz) 

Absolute 
Error 

Mode 1 13.75 14.351 0.601 

Mode 2 38.125 39.555 1.430 

Mode 3 75 77.544 2.544 

Mode 4 124.06 128.209 4.149 

Mode 5 185 191.619 6.619 

Mode 6 258.43 267.883 9.453 

Mode 7 343.75 357.179 13.429 

Mode 8 441.56 459.762 18.202 

Mode 9 551.56 575.953 24.393 

Mode 10 672.5 706.076 33.576 

Mode 11 805.93 850.205 44.275 

Mode 12 950.62 1007.102 56.482 

 

Figure 5.  Experimental and Initial FE Model Resonant Frequencies. 
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In Figure 5, the blue curve is the average of the diagonal elements of the 

measured frequency response function (H). The red lines are the values of the 

estimated natural frequencies of the FE model. 

It is obvious from Table 2 and Figure 5 that the finite element model 

simulates well the beam for the lower modes of vibration. However, as the 

frequency is increased, the error rate also increases, and the resonant 

frequencies do not match very well. 

Thus, a small change in the stiffness of the beam was made. The initial 

value of modulus of elasticity was decreased by 3 percent. The results of that 

change are provided in Table 3 and Figure 6. 

Table 3.   Modified FE Model Resonant Frequencies. 

 Experimental 
Resonant  
Frequencies 
(Hz) 

Modified FE 
Model 
Resonant 
Frequencies 
(Hz) 

Initial 
Absolute 
Error 

New 
Absolute 
Error 

Mode 1 13.75 14.135 0.601 0.385 

Mode 2 38.125 38.958 1.430 0.833 

Mode 3 75 76.372 2.544 1.372 

Mode 4 124.06 126.272 4.149 2.212 

Mode 5 185 188.723 6.619 3.723 

Mode 6 258.43 263.834 9.453 5.404 

Mode 7 343.75 351.781 13.429 8.031 

Mode 8 441.56 452.813 18.202 11.253 

Mode 9 551.56 567.248 24.393 15.688 

Mode 10 672.5 695.404 33.576 22.904 

Mode 11 805.93 837.355 44.275 31.425 

Mode 12 950.62 991.881 56.482 41.261 
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Figure 6.  Experimental and Modified FE Model Resonant Frequencies. 

Now the FE model represents more accurately the real structure. This 

finite element model is defined as a baseline and used for the rest of the 

research.  

 

D. CREATION OF COMPOSITE SENSITIVITY MATRIX 

As discussed previously, to procced with the model updating method a 

composite sensitivity matrix has to be created. This step is one of the most 

difficult and crucial for successfully detecting damage. Based on previous 

research, [9], the QR decomposition technique is used to create the sensitivity 

matrix. After such a matrix is created, it has to be validated using simulated data 

to verify its functionality. The way to validate such a matrix is to apply damage at 

a known location of the finite element model (slightly altering the stiffness value), 

then to calculate the new natural frequencies of the damaged FE model and from 

Equation (2.85), solve for the changes in stiffness as follows: 
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   2[S ] \compositeEI   
.  (3.1) 

 

If the vector  EI  has all values close to zero except for the value that 

corresponds to the damaged element in the FE model, then the composite 

sensitivity matrix is good. This process must be repeated for each potential 

location of damage. This concept is used for damage identification and is further 

discussed in a later chapter. 

Consequently, an investigation is performed to create a reliable composite 

sensitivity matrix. Initially, the comparison of a composite sensitivity matrix 

created using lower modes (1–6), and one created using higher modes (7–12) is 

performed to identify which modes are more effective. 

At the beginning, the creation of sensitivity matrices using structural 

configurations with one pin (ABC1) is investigated. In this experiment, there are 

15 different ABC1 structural configuration cases since there are fifteen 

transducers, and therefore, 15 possible locations where the pin can be applied 

artificially.  

From Figures 5 and 6, it is obvious that only the first 12 vibration modes 

are available. That means only these natural frequencies can be used for the 

creation of the sensitivity matrix. Therefore, the dimensions of the sensitivity 

matrices for each ABC case created from the FE model are 12x14. The number 

12 indicates the number of modes used for the creation of the corresponding 

row, where the number 14 indicates the location of possible damage (or 

element).  

First, a composite sensitivity matrix is created using modes 1–6 (lower 

modes) as follows: 
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where 1

,

ABC

i jS  means that this sensitivity matrix was created by applying a single 

artificial boundary condition at the free-free beam, the subscript “i” shows which 

row was chosen from the specific sensitivity matrix (i.e., the mode used for the 

creation of that row), and the subscript “j” shows which case of ABC1 was used 

(i.e., the location of the pin). 

The composite sensitivity matrix is a full rank, square matrix with the 

values shown in Table 4: 
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Table 4.   Composite Sensitivity Matrix Using Modes 1–6. 

 L

0.0000 0.0001 0.0010 0.0041 0.0083 0.0123 0.0146 0.0145 0.0121 0.0084 0.0046 0.0018 0.0004 0.0000

0.0144 0.1681 0.4166 0.4016 0.1249 0.0306 0.2437 0.3452 0.1319 0.0534 0.1892 0.1239 0.0414 0.0032

0.0000 0.0002 0.0011 0.0028 0 5

=

.00

S

3 0.0079 0.0100 0.0108 0.0100 0.0078 0.0048 0.0020 0.0003 0.0000

1.8309 2.8669 0.9237 3.5107 0.6249 3.4236 1.0864 2.6499 2.0712 1.5819 3.0351 0.8503 4.1767 1.0393

0.0263 0.3821 0.5255 0.1372 0.0111 0.1015 0.1700 0.0901 0.0085 0.0788 0.2009 0.1900 0.0730 0.0061

0.0006 0.0095 0.0349 0.0660 0.0787 0.0604 0.0252 0.0025 0.0109 0.0417 0.0661 0.0617 0.0325 0.0055

0.0161 0.1804 0.4150 0.3450 0.0706 0.0718 0.3200 0.3301 0.0828 0.0584 0.3167 0.3839 0.1455 0.0082

0.0003 0.0052 0.0200 0.0402 0.0520 0.0448 0.0225 0.0031 0.0096 0.0570 0.0678 0.0262 0.0057 0.0003

0.0000 0.0005 0.0021 0.0054 0.0097 0.0139 0.0164 0.0164 0.0137 0.0095 0.0051 0.0020 0.0004 0.0000

0.0002 0.0030 0.0129 0.0313 0.0559 0.0320 0.0024 0.0254 0.0644 0.0831 0.0685 0.0356 0.0095 0.0006

0.7510 3.2107 0.7400 2.1307 1.5047 1.2117 2.4015 0.5345 2.7591 0.5908 2.1073 0.9945 4.8475 3.4580

0.0000 0.0003 0.0020 0.0048 0.0078 0.0100 0.0108 0.0100 0.0079 0.0053 0.0028 0.0011 0.0002 0.0000

0.0003 0.0047 0.0175 0.0335 0.0403 0.0310 0.0121 0.0011 0.0137 0.0544 0.1174 0.0953 0.0217 0.0013
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










































 

 

Then, to simulate damage at a specific location on the beam, a reduction 

of the stiffness value is applied at the corresponding finite element. In this case, a 

reduction of 10 percent of the stiffness value is recursively applied at each 

element (i.e., potential damage location). Using the estimated natural frequencies 

from the damaged and the undamaged finite element model, the vector  2  is 

created. Finally, using this information the results of Equation (3.1) are shown in 

Figures 7–11. In all figures, the y-axis represents the actual value of  EI  

difference, and the x-axis, the number of the element. 
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Figure 7.  Damage Identification for Elements 1–3, Using  LS . 

 

 

Figure 8.  Damage Identification for Elements 4–6, Using  LS . 
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Figure 9.  Damage Identification for Elements 7–9, Using  LS . 

 

  

Figure 10.  Damage Identification for Elements 10–12, Using  LS . 
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Figure 11.  Damage Identification for Elements 12–14, Using LS . 

Obviously, the damage is not identified clearly in each element. Therefore, 

the use of lower modes is not very effective. 

Subsequently a composite sensitivity matrix using modes 7–12 (higher 

modes) is created. However, damage at element 13 can only be identified from 

lower modes, based on QR decomposition. Thus, we purposely use a row 

created from a higher mode that can identify the damage at element 10. It is 

expected that the damage identification process will not identify the damage at 

element 13. Again, this is a full rank, square matrix, which is created as follows: 
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with values shown in Table 5: 

Table 5.   Composite Sensitivity Matrix Using Modes 7–12. 
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Performing damage identification in the same way as previously, yields 

the following results (Figures 12–16): 

 

Figure 12.  Damage Identification for Elements 1–3, Using SH   . 

 

 

Figure 13.  Damage Identification for Elements 4–6, Using SH   . 
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Figure 14.  Damage Identification for Elements 7–9, Using SH   . 

 

 

Figure 15.  Damage Identification for Elements 10–12, Using SH   . 
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Figure 16.  Damage Identification for Elements 13–14, Using SH   . 

Now the damage identification process can be conducted at each element 

with no difficulties, except at element 13 as expected. By changing the thirteenth 

row, 1

8,4

ABCS , of the sensitivity matrix with the row 1

1,11

ABCS , which can identify the 

damage at element 13 based on QR decomposition, the damage is identified as 

Figure 17 shows. Therefore, the use of a composite sensitivity matrix based on 

higher modes is more efficient, as long as it has been created based on QR 

decomposition.  

 

Figure 17.  Damage Identification for Elements 13–14, Based on QR 

Decomposition and Using SH   . 



 47 

Next, the use of two pins (ABC2) for the creation of a composite sensitivity 

matrix is investigated. Moreover, the next composite sensitivity matrix 
SymS   , is 

created from rows of sensitivity matrices, which were created by symmetrical 

structural configurations. Symmetrical structural configurations for a free-free 

beam include, one pin at the middle of the beam (case 8), two pins at the first 

and last node of beam, and so forth. The first case of ABC2 is to apply one pin at 

the first node, and the other pin, at the second node of the finite element model. 

Then the first pin remains at the first node, and each time the second pin shifts a 

node until the last one, and the first 15 cases of ABC2 are created. After this, 

pins are applied at the second and third node, and the same process is repeated 

until all the possible cases (105 cases) have been investigated. Based again on 

the QR decomposition, this composite sensitivity matrix is a full rank, square 

matrix as follows: 
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with the values shown in Table 6: 
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Table 6.   Composite Sensitivity Matrix Based on Symmetrical Structure 
Configurations. 

0.0013 0.0182 0.0626 0.1059 0.1055 0.0582 0.0101 0.0101 0.0582 0.1055 0.1059 0.0626 0.0182 0.0013

0.2083 1.4526 1.2254 0.1570 1.1293 0.6358 0.9956 0.9956 0.6358 1.1293 0.1570 1.2254 1.4526 0.2083

1.5834 2.7237 0.6612 3.234

=SymS  

0 0.6601 2.7248 1.5788 1.5788 2.7248 0.6601 3.2340 0.6612 2.7237 1.5834

11.4461 5.7307 12.7780 9.6626 6.5022 13.5642 7.9077 7.9077 13.5642 6.5022 9.6626 12.7780 5.7307 11.4461

0.0081 0.1473 0.3917 0.3271 0.0623 0.0809 0.3347 0.3347 0.0809 0.0623 0.3271 0.3917 0.1473 0.0081

8.2838 12.0128 10.0543 18.8195 15.0737 9.7465 17.1862 17.1862 9.7465 15.0737 18.8195 10.0543 12.0128 8.2838

0.0389 0.5393 0.4985 0.0333 0.2525 0.3215 0.0767 0.0767 0.3215 0.2525 0.0333 0.4985 0.5393 0.0389

21.3278 17.6994 10.4556 3.5460 2.1296 4.9770 2.9044 2.9044 4.9770 2.1296 3.5460 10.4556 17.6994 21.3278

0.0006 0.0103 0.0459 0.0619 0.0371 0.0155 0.0024 0.0024 0.0155 0.0371 0.0619 0.0459 0.0103 0.0006

0.0026 0.0416 0.1732 0.1470 0.0130 0.0280 0.0867 0.0867 0.0280 0.0130 0.1470 0.1732 0.0416 0.0026

1.8418 4.1231 1.6117 4.4874 4.2618 6.3425 5.8585 5.8585 6.3425 4.2618 4.4874 1.6117 4.1231 1.8418

5.6745 3.5487 5.1647 12.2198 22.6236 17.8427 31.3632 31.3632 17.8427 22.6236 12.2198 5.1647 3.5487 5.6745

2.0025 3.2156 2.1215 1.7149 7.6713 8.4915 13.6926 13.6926 8.4915 7.6713 1.7149 2.1215 3.2156 2.0025

0.0000 0.0002 0.0011 0.0031 0.0067 0.0120 0.0051 0.0051 0.0120 0.0067 0.0031 0.0011 0.0002 0.0000
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 
 
 
 
 
 
  

 

In observing the SymS    matrix, we note the first column and the last are 

the same and so forth. The columns of this matrix are symmetrical to an 

imaginary line passing through its middle (between the seventh and eighth 

columns) and having direction parallel to the y-axis. Damage identification this 

time results in antisymmetric values of ΔEI as Figures 18–22 show.  

  

Figure 18.  Damage Identification for Elements 1–3, Using SymS   . 
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Figure 19.  Damage Identification for Elements 4–6, Using SymS   . 

 

 

Figure 20.  Damage Identification for Elements 7–9, Using SymS   . 
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Figure 21.  Damage Identification for Elements 10–12, Using SymS   . 

 

 

Figure 22.  Damage Identification for Elements 13–14, Using SymS   . 
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1

6,8

ABC
S ) that could still identify the damage at that element. Conducting again 

damage identification, we find the results are clearly worse, as shown in Figures 

23–27. 

  

Figure 23.  Damage Identification for Elements 1–3, Using 
'

HS   . 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-10000

-5000

0

5000

 

 

Predicted

True error

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-1

0

1

2
x 10

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-1

-0.5

0

0.5

1
x 10

4

Damage Identification Applying 10% Reduction



 53 

 

Figure 24.  Damage Identification for Elements 4–6, Using '

HS   . 

 

Figure 25.  Damage Identification for Elements 7–9, Using 
'

HS   . 
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Figure 26.  Damage Identification for Elements 10–12, Using '

HS   . 

 

Figure 27.  Damage Identification for Elements 13–14, Using 
'

HS   . 
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sensitivity matrices found from different ABC configurations, the composite 

sensitivity matrix is not rank deficient but still has “coupled sensitivity information” 

across each row. 

Finally, a full rank, square composite sensitivity matrix based on mixed 

modes, ABC sets, and QR decomposition is created as follows.  
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Table 7.   Composite Sensitivity Matrix Using Mixed Modes and ABC 
Sets. 

3.5834 2.7008 7.1602 10.5646 8.0180 16.9323 11.2927 8.9548 17.0901 10.4761 9.6268 17.0339 10.6314 13.9808

1.5402 3.7993 0.6784 1.7034 0.8041 0.1958 0.9922 0.3464 0.4149 0.9888 0.1688 0.7363 1.0644 0.1648

0.0633 0.595

=

6 0.956

SG  

4 0.2983 0.4416 0.6273 0.0455 0.3252 0.3199 0.0393 0.2352 0.5329 0.3068 0.0317

0.0000 0.0003 0.0009 0.0011 0.0008 0.0006 0.0004 0.0003 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

0.0006 0.0095 0.0356 0.0685 0.0831 0.0644 0.0254 0.0024 0.0320 0.0559 0.0313 0.0129 0.0030 0.0002

0.0000 0.0001 0.0008 0.0023 0.0050 0.0090 0.0097 0.0067 0.0043 0.0024 0.0011 0.0004 0.0001 0.0000

0.0000 0.0001 0.0010 0.0041 0.0083 0.0123 0.0146 0.0145 0.0121 0.0084 0.0046 0.0018 0.0004 0.0000

9.5864 10.9694 8.7243 3.5357 9.2179 3.9107 7.0048 7.1811 3.7920 9.2711 3.5130 7.5432 7.2930 5.9732

0.0000 0.0000 0.0000 0.0001 0.0003 0.0005 0.0008 0.0088 0.0243 0.0136 0.0063 0.0022 0.0004 0.0000

0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0004 0.0217 0.0526 0.0254 0.0090 0.0018 0.0001

0.0003 0.0047 0.0175 0.0335 0.0403 0.0310 0.0121 0.0011 0.0137 0.0544 0.1174 0.0953 0.0217 0.0013

0.0205 0.2127 0.4859 0.1391 0.6360 0.7854 0.1061 0.5242 0.9964 0.2793 0.2878 1.1191 0.7851 0.0894

1.1690 4.6946 0.9545 3.4149 1.7733 2.3347 2.9701 1.2318 3.8688 0.6826 3.5307 0.9586 1.8323 0.2863

3.5315 7.9478 2.8017 6.4430 3.4137 5.8540 4.0771 5.1829 4.6497 4.0991 3.8655 2.0862 2.4239 0.8229
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Then the damage identification process is conducted again, Figures 28–

32. 

 

Figure 28.  Damage Identification for Elements 1–3, Using  GS . 
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Figure 29.  Damage Identification for Elements 4–6, Using  GS . 

 

 

Figure 30.  Damage Identification for Elements 7–9, Using  GS . 
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Figure 31.  Damage Identification for Elements 10–12, Using  GS . 

 

 

Figure 32.  Damage Identification for Elements 10–12, Using  GS . 
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E. CALCULATION OF EXPERIMENTAL NATURAL FREQUENCIES FOR 
ABC SETS USING SYNTHESIS 

The previous chapter demonstrated the use of simulated data for damage 

identification. Initially, the same concept is used to update the finite element 

model. However, this time, experimental natural frequencies are used. The 

vector  2  of equation: 

 

   2[S ] \compositeEI   
,  (3.1) 

 

is formed as  2 2 2

exp FE     , where the subscript “exp” denotes experimental 

data, and the subscript “FE” denotes finite element data. From the experiment, a 

frequency response function for the free-free beam is measured. This FRF is a 

15x15 matrix. However, the use of natural frequencies from other ABC sets is 

needed. Thus, the synthesis equation, Equation (2.53),  

 

      
1*

ii ii ic cc ciH H H H H


     ,  
 

which was derived in Chapter II, Section G, is used. Applying a pin at the beam 

(ABC1) results in an FRF that is a 14x14 matrix, and using Equation (2.34) the 

natural frequencies of ABC1 sets can be evaluated. Again, the average of the 

diagonal elements of the FRF matrix is used. For reasons of simplicity and 

brevity, only four cases of ABC1 sets are demonstrated in Figures 33–36. 
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Figure 33.  Frequency Response Function for ABC1 with Pin at Node 1.  

 

Figure 34.  Frequency Response Function for ABC1 with Pin at Node 5. 
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Figure 35.  Frequency Response Function for ABC1 with Pin at Node 9. 

 

Figure 36.  Frequency Response Function for ABC1 with Pin at Node 14. 
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frequencies of the peak values are used as the natural frequencies for the 

corresponding ABC set. The red lines are the estimated natural frequencies from 

the finite element model.  

Next, the creation of the FRF matrix for ABC2 sets is performed by 

applying two pins on the free-free beam. This time the resulting FRF matrix is 

13x13, and the average of the diagonal elements of the matrix is used. The 

possible cases for ABC2 are 105, so only a few cases are demonstrated in 

Figures 37–40. 

 

Figure 37.  Frequency Response Function for ABC2 with  
Pins at Nodes 1, 2. 

 

0 100 200 300 400 500 600 700 800 900 1000
-100

-50

0

50

ABC2, pins applied at nodes 1 and 2

Hz

R
e

s
p

o
n

s
e

 

 

Experimental

FE



 63 

 

Figure 38.  Frequency Response Function for ABC2 with  
Pins at Nodes 5, 13. 

 

Figure 39.  Frequency Response Function for ABC2 with  
Pins at Nodes 7, 10. 
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Figure 40.  Frequency Response Function for ABC2 with  
Pins at Nodes 12, 15. 
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Specifically, the ABC natural frequencies will always interlace the natural 

frequencies of a higher order system. When one pin (ABC1) is imposed on the 

baseline system, the free-free beam, the resulting natural frequencies will 

interlace the natural frequencies of the baseline structure. That is true for every 

different ABC set. In this research, there are 15 cases for ABC1. After the 

identification of the natural frequencies for each mode, we plot the results, 

including the measured natural frequencies of the free-free beam, as Figure 41 

shows. These natural frequencies correspond to the experimental data, so a 

verification of the experimental setup, process, and results is actually performed. 

 

Green stars and lines represent the experimental natural frequencies of the 
baseline beam. The other stars represent the natural frequencies for a different 
ABC1 configuration. The way of identifying these natural frequencies is explained 
in Section E of this chapter. 

Figure 41.  Interlacing of Experimental Natural Frequencies for  
ABC1 Sets. 
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In Figure 41, each row represents the natural frequencies for a different 

ABC set. The first row, in green color, is the natural frequencies of the baseline 

structure. The second row has the natural frequencies for ABC1 by imposing the 

pin on the first node (1). The third row has the natural frequencies for ABC1 by 

imposing the pin on the second node (2), and so forth. The last row has the 

natural frequencies for ABC1 by imposing the pin on the last node (15). The 

natural frequencies for the first mode of each ABC1 set are between (interlace) 

the natural frequencies of the first and second mode of the baseline structure, as 

expected. That is the case for each higher mode respectively. This can be 

validated from Figure 41, which means that the identified natural frequencies are 

correct. 

The same process is performed for the natural frequencies of ABC2 sets. 

However, this time there are 105 different cases. The results are shown in Figure 

42. 
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Green stars and lines represent the experimental natural frequencies of the 
baseline beam. The other stars represent the natural frequencies for a different 
ABC2 configuration. The way of identifying these natural frequencies is explained 
in Section E of this chapter. 

Figure 42.  Interlacing of Experimental Natural Frequencies for  
ABC2 Sets. 
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problems and errors. In Figures 37–40, the FRF of some ABC2 sets was shown. 

Obviously, the identification of the peak values for some modes is not easy, and 

that might be one of the reasons that some natural frequencies are not in the 

expected range. 

In conclusion, the natural frequencies calculated using the ABC and 

synthesis theory have been validated by Cauchy’s interlace theorem. These data 

are further used in the creation of vector  2 , to solve Equation (3.1), as 

discussed in Section E of this chapter. Some data that are not in the expected 

range are avoided. 

G. SIMULATED ERROR IN EXPERIMENTAL NATURAL FREQUENCIES 

The sampling process allows the use of a computer to store and edit a 

continuous signal. During the vibration experiment, continuous signals are 

created. However, they have to be discretized or sampled into finite data in order 

to be stored and edited by a computer. The time step between each sample is 

called the sample size. The smaller the sample size is, the more accurate the 

representation of the continuous signal is. The drawback is that it takes more 

memory to store all these data, and the time to edit or use them is increased. 

Because of the sampling process, the data between two sampling points are lost. 

This means that the representation of the experimental data might be inaccurate, 

especially if the continuous signal changes rapidly with time. 

From the measured FRF, the corresponding frequencies to the peak 

values were used as natural frequencies. Nevertheless, the actual peak value 

could be anywhere in the sample size range, since these data were lost, as 

Figure 43 shows.  
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Figure 43.  Error Due to Sampling. 

Therefore, an investigation to identify the susceptibility of the identified 

natural frequencies in error due to sampling, must be performed. In this 

experiment, the sample size has been set to 0.3125Hz. The investigation is 

performed using the sensitivity matrix  GS , which has been created from mixed 

ABC sets and modes. Again, using Equation (3.1),    2[S ] \compositeEI    ,the 

damage identification process is conducted, and the results are evaluated. This 

time the value of 0.3124 is added recursively at each experimental natural 

frequency used to simulate an error due to sampling. Thus, vector  2  is the 

same, except for one of its elements, each time, which is changed as follows: 

 

 
,

2
2 2

exp,i2 0.3124
FE ii f   

 
     , 1, ,14i  , 

 

where exp,if  is the experimental natural frequency to be adjusted, and 
,

2

FE i
  is the 

corresponding natural frequency from the finite element model. Initially, the error 



 70 

is applied at the first element by reducing the stiffness by 10 percent. Figures 44–

57 show the results of the damage identification process for the first element, by 

perturbing recursively each element of the vector  2 . 

 

Figure 44.  Damage Identification for Element 1, Perturbing the First 
Frequency. 
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Figure 45.  Damage Identification for Element 1, Perturbing the Second 
Frequency. 

 

 

Figure 46.  Damage Identification for Element 1, Perturbing the Third 
Frequency. 
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Figure 47.  Damage Identification for Element 1, Perturbing the Fourth 
Frequency. 

 

 

Figure 48.  Damage Identification for Element 1, Perturbing the Fifth 
Frequency. 
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Figure 49.  Damage Identification for Element 1, Perturbing the Sixth 
Frequency. 

 

 

Figure 50.  Damage Identification for Element 1, Perturbing the Seventh 
Frequency. 
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Figure 51.  Damage Identification for Element 1, Perturbing the Eighth 
Frequency. 

 

 

Figure 52.  Damage Identification for Element 1, Perturbing the Ninth 
Frequency. 
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Figure 53.  Damage Identification for Element 1, Perturbing the Tenth 
Frequency. 

 

 

Figure 54.  Damage Identification for Element 1, Perturbing the Eleventh 
Frequency. 
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Figure 55.  Damage Identification for Element 1, Perturbing the Twelfth 
Frequency. 

 

 

Figure 56.  Damage Identification for Element 1, Perturbing the Thirteenth 
Frequency. 
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Figure 57.  Damage Identification for Element 1, Perturbing the 
Fourteenth Frequency. 

In each figure, the red bars are the results from the damage identification 

process, applying damage at the first element, with no change at the natural 

frequency vector. Thus, the red bars are the same as the first plot of Figure 12. 

The blue bars are the result of the damage identification process at the same 

finite element, with perturbation at one natural frequency. In some cases (1, 8, 

14), the damage identification process can still identify the damaged element, 

even if the “experimental error” has been added in the corresponding natural 

frequency. The natural frequencies in these cases are the frequencies of the 
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identification process cannot be conducted easily, since it is not obvious which is 
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The same process is conducted for each finite element, and the results 

are provided in Table 8 using a color code. The green color means that the 

damage identification can easily be conducted, the yellow color means that there 

are some discrepancies in the results that make the damage identification 

process difficult, and the red color means that the damage identification process 

cannot be conducted. 

Table 8.   Results of Damage Identification for Each Finite Element, by 
Perturbing Each Used Natural Frequency. 

Perturbed 
Element 
of Vector  

 2  

Mode Used 
for the 

Creation of 
the 

Corresponding 
Element of 

Vector  

 2  

 

Damaged Element 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 9                             

2 5                             

3 4                             

4 1                             

5 2                             

6 1                             

7 1                             

8 8                             

9 2                             

10 2                             

11 2                             

12 4                             

13 6                             

14 7                             

The green boxes indicate that the damage identification process can be easily 
performed at the corresponding element. The yellow boxes indicate that the damage 
identification process cannot be performed with accuracy at the corresponding element. 
The red boxes indicate that the damage identification process cannot be performed at 
the corresponding element.  
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From Table 8, it is obvious that the natural frequencies of eighth mode and 

higher are not susceptible to experimental error for the specific sample size that 

has been used. That is happening because the relative error is small in 

comparison to the error using lower modes. In this experiment, the sample size is 

0.3125Hz, so the perturbation used is 0.3124Hz, and the experimental natural 

frequency of the eighth mode is 447.2Hz. Therefore, the relative error is: 

 

exp

exp

0.00069 0.069%
errorf f

f


 

. 
 

Thus, if the relative error is smaller than 0.069 percent, the natural 

frequency is not susceptible to error due to sampling for this specific experiment 

and for the specific sample size. Again, the use of higher modes is better. 
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IV. MODEL UPDATE USING EXPERIMENTAL DATA 

A. INTRODUCTION 

Taking into consideration the analysis of Chapter III, we find the use of 

natural frequencies of higher modes generally is better than lower modes, due to 

smaller relative errors in relation to the frequency spacing. To update the initial 

finite element model, Equation (3.1) is used. This time the vector  2  is 

created using the measured natural frequencies from the experiment and the 

estimated natural frequencies from the finite element model.  

Moreover, the composite sensitivity matrix  HS , is used. This matrix was 

created using frequencies of higher modes, except from the thirteenth element, 

as described in Chapter III, Section D, where the following row is used: 1

4,14

ABCS . 

This row is created from the higher available frequency and can identify damage 

at the thirteenth finite element based on QR decomposition. 

Then Equation (3.1) is solved again, and the results are shown in Figure 58. 
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Figure 58.  Damage Identification Process, Experimental Beam—Finite 
Element Model. 

The results shown in Figure 58 actually represent the change of the 
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natural frequencies of the finite element model to match the natural frequencies 
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element model to more accurately represent the real structure. Next, this 
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Figure 59.  Resonant Frequencies of Updated Finite Element Model, 
Using the Actual Values of Stiffness. 

In Figure 59, the blue curve is the FRF of the experimental beam, the 

green lines are the estimated natural frequencies of the initial finite element 

model, and the red lines are the natural frequencies of the updated finite element 

model. The expectation was that the red lines would match the peaks of the FRF 

curve. Not only is that not the case, but the updated model is even worse than 

the initial one. 

Going back to Figure 58, we observe that the changes that have to be 

applied to the finite element model are not logical. The stiffness value of the 

beam (EI) is 232.34 N*m2 (80961 lbm*in2). The changes that have to be applied 

at most of the elements are of the same order of magnitude. Imagining that these 

changes are applied to a uniform beam, we can conclude that the updated 

structure will not be a uniform beam anymore. In other words, physically realistic 

updating changes made to the beam should preserve its uniformity. 
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C. MODEL UPDATE USING THE MEAN VALUE OF STIFFNESS  

Instead, a more reasonable approach seems to be the use of the mean 

value of the stiffness changes, which has to be applied at each element. That 

idea is demonstrated using the three different composite sensitivity matrices. 

1. Model Update Using the Composite Sensitivity Matrix  HS  

The mean value is shown in Figure 60 with a green line, and its value is –

10.57 N*m2 (3686 lbm*in2). This change is applied at each element. Thus, a 

constant value across the finite element model is added (or subtracted). The 

resulting structure will still be a uniform beam, with smaller stiffness value in this 

case, because the mean value is negative. 

 

The green horizontal line is the mean value of the stiffness changes of each 
element. 

Figure 60.  Mean Value of Stiffness Changes Using  HS . 
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The natural frequencies of the updated finite element model are shown in 

Figure 61.  

 

Figure 61.  Resonant Frequencies of the Updated Finite Element Model, 

Using the Mean Value of Stiffness and  HS . 
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The red horizontal line is the mean value of the error between the updated finite 
element model and the experimental natural frequencies. The blue horizontal line 
is the mean value of the error between the initial finite element model and the 
experimental natural frequencies.  

Figure 62.  Relative Errors Between Experimental, Initial FE, Updated FE 
Natural Frequencies. 

In Figure 62, the blue columns represent the relative error between the 

estimated natural frequencies of the initial FE model and the measured natural 

frequencies. The red columns represent the relative error between the estimated 

natural frequencies of the updated FE model and the measured natural 

frequencies. The horizontal lines are the mean value of the error for each case. It 

is obvious that the updated model better represents the real beam. Moreover, the 

accuracy of the higher modes, which are better to use based on the analysis so 

far, has been greatly improved. 

Yet the estimated natural frequencies are not an exact match with the 

experimental data. Thus, using Equation (3.1) again causes new values of 
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stiffness changes for each element to arise. Again, the expectation is that the 

mean value will be used to further update the model. However, this time the 

mean value is close to zero, as shown in Figure 63; thus, the model cannot be 

updated further using this procedure. The remaining stiffness values are called 

residual stiffness errors. 

 

Figure 63.  Mean Value of Stiffness Changes After the First Update. 

2. Model Update Using the Composite Sensitivity Matrix  LS  

The update of the finite element model using the composite sensitivity 

matrix  HS , which was created using higher modes, has been successfully 

performed. Next, the ability of the composite sensitivity matrix  LS , which was 

created using lower modes, to update the finite element model is investigated. 
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The results of the solution of Equation (3.1) by using the sensitivity matrix 

 LS  are presented in Figure 64. The mean value of the stiffness changes that 

must be applied at each element is -4563 N*m2 (1.59*106 lbm*in2). The stiffness 

value of the beam is 232.34 N*m2 (80961 lbm*in2). Thus, this mean value cannot 

be applied in order to update the finite element model. Consequently, the 

composite sensitivity matrix created by lower modes,  LS , cannot be used for 

updating purposes. For demonstration purposes only, the finite element model 

has been updated using the incorrect mean value, and the results are provided in 

Figure 65. 

 

Figure 64.  Mean Value of Stiffness Changes Using  LS  Sensitivity 

Matrix. 
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Figure 65.  Resonant Frequencies of the Updated Finite Element Model, 

Using the Mean Value of Stiffness and  LS  Sensitivity Matrix. 

It is obvious from Figure 65 that all the resonant frequencies of the 

updated finite element model are zeros since there is no beam. Thus, a 

sensitivity matrix created by lower modes is not able to update the model. 

3. Model Update Using the Composite Sensitivity Matrix  GS  

Finally, the composite sensitivity matrix  GS , which was created by mixed 

ABC sets and modes, is used to update the finite element model. Again, using 

the composite sensitivity matrix  GS  and solving Equation (3.1), we get the 

changes of stiffness at each element as shown in Figure 66. The mean value of 

stiffness changes this time is 1256.98 N*m2 (4.38*105 lbm*in2). It is a positive 

value; however, the order of magnitude compared to the stiffness of the beam is 
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higher. Again, it does not seem reasonable to add this value in order to update 

the finite element model. The resonant frequencies of the updated finite element 

model, using the composite sensitivity matrix  GS , are provided in Figure 67. 

 

Figure 66.  Mean Value of Stiffness Changes Using  GS  Sensitivity 

Matrix. 



 91 

 

Figure 67.  Resonant Frequencies of the Updated Finite Element Model, 

Using the Mean Value of Stiffness and  GS  Sensitivity Matrix. 

The resonant frequencies of the updated finite element model are not 

even close to the measured natural frequencies of the beam due to the large 

value of the mean stiffness, which was added at each element. Thus, the 

composite sensitivity matrix  GS  cannot be used to update the finite element 

model. 

For the rest research the finite element model updated using the 

composite sensitivity matrix created by higher modes,  HS , is used. 

D. CONCLUDING REMARKS 

In this chapter the finite element model update was performed. It was 

demonstrated that when the actual value of stiffness changes is applied at each 
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element, the model update process fails. A new concept for model update was 

introduced, in which the mean value of stiffness changes is applied at every 

element.  

The update process has been successfully performed using a composite 

sensitivity matrix made by higher modes. The use of other sensitivity matrices 

made from lower modes or mixed modes could not update the finite element 

model. It is worth mentioning that the sensitivity matrix  GS  has the best 

performance in damage identification using simulated data, as shown in Chapter 

III; however, it cannot be used for updating purposes. 

Even if the finite element model was updated, the estimated natural 

frequencies still would not exactly correspond with the measured natural 

frequencies. The error of the higher natural frequencies between the FE model 

and the experimental data has been significantly decreased. However, after the 

update of the finite element model, because of the mismatch of the natural 

frequencies, we still find some changes of stiffness value at each element using 

Equation (3.1) again. These values are called residual stiffness errors. In this 

research, the model cannot be updated further using the mean stiffness value 

technique. 

Using the mean stiffness to update the finite element model, we find the 

sensitivity matrices of the different ABC sets remain the same. Therefore, there is 

no need to recalculate a sensitivity matrix for future purposes if its calculation has 

already been done. That decreases the required computational time. 
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V. DAMAGE IDENTIFICATION PROCESS 

A. INTRODUCTION 

One purpose of finite element model updating is to provide a baseline 

finite element model with which to conduct health monitoring of a real structure in 

the future. By measuring the dynamic behavior of the structure in the future and 

comparing the results with the updated finite element model, we can identify and 

locate potential damage on the structure. This is the main reason that a finite 

element model has to represent as accurately as possible the real structure. 

To measure the dynamic behavior of the structure in the future, a vibration 

experiment must be conducted again. If the dynamic characteristics are the same 

as in the initial one, then the structure is intact. If there are some mismatches at 

any dynamic characteristic (for example at the natural frequencies) that means 

the structure might have been damaged. 

B. DAMAGE IDENTIFICATION 

From the analysis of the previous chapter, it is known that the updated 

finite element model does not have the same exact dynamic behavior as the 

structure. Thus, using Equation (3.1) results in some residual stiffness errors, 

 RESEI . 

The damage identification process is conducted using Equation (3.1), 

   2[ ] \EI S    , which in this case has the form: 

 

   2 2

exp[ ] \RES H updEI S    
,  (5.1) 

 

where 2

exp  are the experimental natural frequencies of the structure, 2

upd  are 

the calculated natural frequencies of the finite element model, [ ]HS  is the 

composite sensitivity matrix created using the higher modes, and  RESEI  is the 
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vector with the residual stiffness errors. Since the update of the finite element 

model has been conducted, any composite sensitivity matrix can be used for the 

damage identification process. As will be explained later in this research, due to 

the way that the finite element model has been updated (using the mean stiffness 

value), the sensitivity matrices do not change. 

In actuality, the beam would be damaged, but for practical reasons, the 

real beam was not damaged in this case. For the purposes of this research, we 

introduced damage to the updated FEM to simulate damage on the beam. 

Then, the composite sensitivity matrix of the updated finite element model 

has to be calculated again. However, because at each element the same amount 

of stiffness changes (mean value) was applied, any sensitivity matrix remains the 

same. Thus, there is no need to recalculate any sensitivity matrix that has 

already been calculated. In this case, the composite sensitivity matrix SH    is 

used again. The damage is simulated by decreasing the stiffness value of the 

corresponding element. Initially, a 0.1 percent decrease of stiffness is applied at 

the fifth element. This time Equation (3.1) has the form: 

 

   2 2

1 exp _[ ] \H upd DamEI S    
,  (5.2) 

 

where 2

_upd Dam  are the calculated natural frequencies of the damaged updated 

finite element model. The results of the damage identification process, i.e., vector 

 1EI , are provided in Figure 68.  
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Figure 68.  Damage Identification Process, Using the  
Damaged Updated FE Model. 

It is obvious that the damage identification process cannot identify the 

damaged element. The same case applies for each element. 

C. DAMAGE IDENTIFICATION USING COMPARISON 

It was shown that using the updated model, the damage identification 

process cannot be conducted. To overcome this problem, a new idea is 

introduced: the comparison of stiffness values. This method is investigated using 

all the composite sensitivity matrices. 

1. Comparison of Stiffness Values Using the Composite 

Sensitivity Matrix  HS  

Writing again Equations (5.1) and (5.2) results in: 
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   2 2

exp [ ]upd H RESS EI   
,  (5.1) 

 

   2 2

exp _ 1[ ]upd Dam HS EI   
.  (5.2) 

 

By subtracting Equations 5.1 and 5.2 yields: 

 

   2 2

_ 1[ ]upd upd Dam H RESS EI EI     
. (5.3) 

 

Solving for the stiffness value results in: 

 

   2 2

1 _[ ] \RES H upd upd DamEI EI S      
. (5.4) 

 

This is actually a comparison of the initial results from the damage 

identification process (residual stiffness) and the results from the damage 

identification process of the damaged updated finite element model. Therefore, 

Equation (5.4) is actually used to perform damage identification. The 

investigation of the damage identification process is then conducted by applying 

0.1 percent decrease of stiffness recursively at each element of the updated finite 

element model. The results of the damage identification process using 

comparison are provided in Figures 69–82. 
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Figure 69.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 1. 

 

 

Figure 70.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 2. 
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Figure 71.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 3. 

 

 

Figure 72.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 4. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-10000

-8000

-6000

-4000

-2000

0

2000

Element Number

Damage Identification Process Using Comparison

 

 

Predicted error

True error

1 2 3 4 5 6 7 8 9 10 11 12 13 14
-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

Element Number

Damage Identification Process Using Comparison

 

 

Predicted error

True error



 99 

 

Figure 73.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 5. 

 

 

Figure 74.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 6. 
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Figure 75.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 7. 

 

 

Figure 76.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 8. 
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Figure 77.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 9. 

 

 

Figure 78.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 10. 
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Figure 79.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 11. 

 

 

Figure 80.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 12. 
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Figure 81.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 13. 

 

 

Figure 82.  Damage Identification Using Comparison and the Sensitivity 

Matrix  HS , Applying 0.1% Damage at Element Number 14. 
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Generally speaking, the damage identification process can be easily 

conducted at elements 1–12; although for elements 13 and 14 the damaged 

element cannot be identified. Thus, by comparing the residual stiffness errors of 

the updated finite element model and the stiffness values of the updated 

damaged finite element model, we can identify potential damage at the first 12 

elements. In Equation (5.4) the left hand side ( 1 RESEI EI  ), has been created 

from Equations (5.2) and (5.1), respectively, where experimental data have been 

used. Because of the experimental data that have been used, there are more 

discrepancies in the results of the damage identification process when compared 

to the use of simulated data only. The use of the sensitivity matrix  HS  cannot 

identify damage at the last two elements. 

2. Comparison of Stiffness Values Using the Composite 

Sensitivity Matrix  LS  

Next, the use of the sensitivity matrix  LS  for damage identification by 

comparison is investigated. Equation (5.4) becomes: 

 

   2 2

2 _[ ] \RES L upd upd DamEI EI S     
. (5.5) 

 

Again, the damage is simulated by decreasing the stiffness value of the 

element. A decrease of 0.1 percent of stiffness is applied recursively at each 

element. The results of the damage identification by comparison are shown in 

Figures 83–96. 
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Figure 83.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 1. 

 

 

Figure 84.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 2. 
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Figure 85.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 3. 

 

 

Figure 86.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 4. 
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Figure 87.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 5. 

 

 

Figure 88.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 6. 
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Figure 89.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 7. 

 

 

Figure 90.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 8. 
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Figure 91.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 9. 

 

 

Figure 92.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 10. 
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Figure 93.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 11. 

 

 

Figure 94.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 12. 
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Figure 95.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 13. 

 

 

Figure 96.  Damage Identification Using Comparison and the Sensitivity 

Matrix  LS , Applying 0.1% Damage at Element Number 14. 
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A conclusion that can be reached by inspecting Figures 83–96 is that the 

damage identification process cannot be successfully conducted at the most of 

the elements. Thus, the use of a composite sensitivity matrix made by lower 

modes will not yield correct results. 

3. Comparison of Stiffness Values Using the Composite 

Sensitivity Matrix  GS   

Finally, the composite sensitivity matrix  GS , which was created by mixed 

artificial boundary condition sets and modes, is tested. It is worth remembering 

that this sensitivity matrix had the best performance in damage identification 

using simulated data only. This time Equation (5.4) becomes: 

 

   2 2

3 _[ ] \RES G upd upd DamEI EI S     
. (5.6) 

 

As before, the damage is simulated by decreasing the stiffness value of 

the element. A decrease of 0.1 percent of stiffness is applied recursively at each 

element of the updated finite element model. The results of the damage 

identification process by comparison are provided in Figures 97–110. 
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Figure 97.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 1. 

 

 

Figure 98.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 2. 
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Figure 99.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 3. 

 

 

Figure 100.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 4. 
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Figure 101.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 5. 

 

 

Figure 102.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 6. 
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Figure 103.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 7. 

 

 

Figure 104.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 8. 
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Figure 105.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 9. 

 

 

Figure 106.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 10. 
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Figure 107.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 11. 

 

 

Figure 108.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 12. 
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Figure 109.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 13. 

 

 

Figure 110.  Damage Identification Using Comparison and the Sensitivity 

Matrix  GS , Applying 0.1% Damage at Element Number 14. 
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It is obvious that the damaged element can always be identified 

accurately. Thus, this sensitivity matrix has the best performance in damage 

identification by comparison. 

D. MULTIPLE DAMAGE IDENTIFICATION BY COMPARISON 

So far, it was possible to identify damage at a single element using the 

damage identification by comparison method. The best sensitivity matrix for this 

purpose has been shown to be the  GS , followed by the  HS , which could not 

identify the damage at the last two elements. 

Next, the ability of these matrices to identify multiple damages is 

investigated. In this investigation, three elements are modeled as damaged each 

time. Again, a decrease of the stiffness by 0.1 percent is applied at the 

corresponding elements. There are many possible combinations; nevertheless, in 

order to be consistent and reach a conclusion, each time three consecutive 

elements are damaged. The sensitivity matrix  LS  is not examined because the 

damage identification process by comparison using that matrix could not identify 

the damage at a single element. 

1. Multiple Damage Identification by Comparison, Using the 

Composite Sensitivity Matrix  GS   

The result of the damage identification process using comparison is 

provided in Figures 111–122. 
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Figure 111.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 1, 2, 3. 

 

Figure 112.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 2, 3, 4. 
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Figure 113.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 3, 4, 5. 

 

Figure 114.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 4, 5, 6. 
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Figure 115.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 5, 6, 7. 

 

Figure 116.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 6, 7, 8. 
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Figure 117.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 7, 8, 9. 

 

Figure 118.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 8, 9, 10. 
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Figure 119.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 9, 10, 11. 

 

Figure 120.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 10, 11, 12. 
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Figure 121.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at 

Elements 11, 12, 13. 

 

Figure 122.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  GS , Applying 0.1% Damage at  

Elements 12, 13, 14. 
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Generally speaking, the localization of the damage can be performed 

accurately in most cases. In this investigation, the damage is extended to three 

elements, which amounts to 21 percent of the beam’s length. Thus, large 

damage is simulated. This is the reason that the results are not as accurate as 

before.  

2. Multiple Damage Identification by Comparison, Using the 

Composite Sensitivity Matrix  HS   

Finally, the ability of the  HS
 matrix to identify multiple damages is 

investigated. As previously, three elements are modeled as damaged by applying 

a decrease of stiffness by 0.1 percent at the corresponding elements. The results 

of the damage identification process by comparison are provided in Figures 123–

134. 

 

Figure 123.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 1, 2, 3. 
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Figure 124.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 2, 3, 4. 

 

Figure 125.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 3, 4, 5. 
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Figure 126.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 4, 5, 6. 

 

Figure 127.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 5, 6, 7. 
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Figure 128.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 6, 7, 8. 

 

Figure 129.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 7, 8, 9. 
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Figure 130.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 8, 9, 10. 

 

Figure 131.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 9, 10, 11. 
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Figure 132.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 10, 11, 12. 

 

Figure 133.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1% Damage at  

Elements 11, 12, 13. 
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Figure 134.  Multiple Damage Identification Using Comparison and the 

Sensitivity Matrix  HS , Applying 0.1%  

Damage at Elements 12, 13, 14. 

Obviously, the damage identification process by comparison is not able to 

identify the damaged elements. Thus, the sensitivity matrix  HS  is not as effective 

as the sensitivity matrix  GS  for multiple damage identification purposes. 

E. CONCLUDING REMARKS 

In this chapter the damage identification process has been demonstrated. 

In order not to damage the real beam, the damage is applied to the finite element 

model by decreasing the stiffness of the corresponding element. Using Equation 

(5.2), which is the standard way of performing damage identification, we were not 

able to identify the damaged element in any case. 

A new way to perform damage identification was proposed and 

investigated. The damage identification process using comparison can be 

summarized as follows: 
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     2 2

1 exp _\ upd DamEI S    
  

     2 2

exp\RES updEI S     
  

   2 2

1 _[ ] \RES upd upd DamEI EI S      
 , (5.7) 

 

where  1EI  is the stiffness vector created by damage identification between the 

experimental data and the updated damaged finite element model,  RESEI  is the 

residual stiffness vector created by damage identification between the 

experimental data and the updated finite element model,  S  is an arbitrary 

composite sensitivity matrix,  2

exp  is a vector created by the experimental natural 

frequencies,  2

upd  is a vector created by the estimated natural frequencies of the 

updated finite element model, and  2

_upd Dam  is a vector created by the estimated 

natural frequencies of the updated damaged finite element model. 

The residual stiffness of the updated damaged finite element model is 

subtracted from the stiffness of the updated finite element model. Thus, Equation 

(5.7) is used. In this research, the mean stiffness value was used to update the 

finite element model. This is the reason that the composite sensitivity matrix, 

which was used for the damage identification process, is the same as the 

composite sensitivity matrix of the baseline finite element model. 

Using the composite sensitivity matrix made from higher modes, [ ]HS , the 

damage identification process by comparison is not able to identify the damage 

at the last two elements. However, the damage at the rest of the elements can be 

identified. Moreover, the use of this matrix in multiple damage identification (three 

damaged elements) was not successful.  

The composite sensitivity matrix [ ]GS  has the best performance in 

damage identification using comparison. It can identify the damage at any 

element. This matrix also has the best performance in damage identification 

using computational data, as demonstrated in Chapter III. Furthermore, in 
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multiple damage identification, the use of this matrix can identify the damaged 

elements, even if the simulated damage is at three elements, which corresponds 

to almost 21 percent of the beam’s length. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This research was mainly focused on the use of experimental data for 

model update and damage identification. The investigation process described in 

this thesis led to several important conclusions.  

Initially, the use of the QR decomposition method to create the composite 

sensitivity method was verified using simulated data. An interesting result from 

this investigation, though, is that data from symmetrical structural configurations 

must not be used in the creation of the composite sensitivity matrix. 

Next, it was demonstrated that the use of an experimentally measured 

frequency response function matrix can identify the resonant frequencies of any 

artificial boundary condition systems. The accuracy of those natural frequencies 

was validated using Cauchy’s interlace theorem. 

Furthermore, this research demonstrated that the natural frequencies of 

higher modes (in this case the seventh mode and higher) are more resistant to 

experimental error due to sampling. The reason for this is that the higher the 

mode is, the smaller the relative error is with respect to the frequency resolution 

of the measured frequency response functions. 

Then, the standard method for model updating and the use of 

experimental data were shown to be inadequate for updating the finite element 

model. Therefore, this thesis introduced and demonstrated a new method for 

model update, the use of the mean value of the stiffness. Because the finite 

element model does not have the same dynamic behavior as the real structure, 

stiffness changes have to be applied at each element of the model to improve 

(update) that behavior. In general, these changes have a different value for each 

element. In the mean stiffness value method, the mean value of these changes in 

stiffness is applied at every element. It was demonstrated that using a composite 

sensitivity matrix made of higher modes would result in a successful update 
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process. In this research, however, the model could only be updated using this 

method once. 

Another advantage of using the mean stiffness value method is that the 

sensitivity matrix does not change. Thus, its calculation is required only once, 

which decreases the required computation time. 

Finally, it was found that using experimental data and the standard 

method for damage identification, the damaged element could not be identified. 

Again, this thesis introduced and demonstrated a new method for damage 

identification: the damage identification method using comparison, which is 

summarized in Equation (5.7). In this method, the residual stiffness errors are 

compared with the stiffness value of the damaged model. Any composite 

sensitivity matrix can be used for this process. However, if the finite element 

model has been updated using the mean stiffness value, the same sensitivity 

matrix can be used. It was found that the best performance in damage 

identification has been reached using a composite sensitivity matrix created by 

mixed artificial boundary condition sets and mixed modes, which had the best 

performance in damage identification using simulated data. Furthermore, this 

research demonstrated that using that sensitivity matrix could successfully 

identify multiple damages. 

B. RECOMMENDATIONS 

The findings of this research for model update and damage identification 

look promising. Nevertheless, there is a long way to go before these methods 

can be successfully used. 

The use of the mean stiffness method for model update, for example, has 

been performed only on a simple and uniform structure, a beam, in this research. 

Subsequent studies should focus on validating this method on more complex 

structures that might not be uniform. 
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In this thesis, the damage identification using comparison has been 

performed damaging the finite element model. In a future research, the real 

structure should be damaged. Then, Equation (5.7), which was used for the 

damage identification process, will become: 

 

   2 2[ ] \x RES upd DamEI EI S     
, 

 

where  xEI  is the stiffness vector created by damage identification between 

the intact structure and the damaged structure,  RESEI  is the residual stiffness 

vector created by damage identification between the intact structure and the 

updated finite element model,  S  is an arbitrary composite sensitivity matrix, 

 2

upd  is a vector created by the estimated natural frequencies of the updated 

finite element model, and  2

Dam  is a vector created by the measured natural 

frequencies of the damaged structure. 

Finally, the use of different composite sensitivity matrices is suggested to 

investigate the performance of these methods. 
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